

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ
«РОСАТОМ»

СЕРТИФИКАТ-РАЗРЕШЕНИЕ

Регистрационный номер 125

от „09“ августа 2021 г.

НА РАДИОАКТИВНЫЙ МАТЕРИАЛ ОСОБОГО ВИДА

**Источники гамма-излучения закрытые
на основе радионуклида селен-75**

RUS/6223/S-96(Rev.4)

Выдан

09.08.2021

Срок действия

09.08.2026

**Заместитель генерального
директора по государственной
политике в области
безопасности при
использовании атомной энергии
в оборонных целях**

Ю.В. Яковлев

№ 001011

Лист согласования

СОГЛАСОВАНО

Заместитель руководителя
Федеральной службы
по экологическому, технологическому
и атомному надзору

А.В. Ферапонтов
«02».08.2021 г.

СЕРТИФИКАТ – РАЗРЕШЕНИЕ
НА РАДИОАКТИВНЫЙ МАТЕРИАЛ
ОСОБОГО ВИДА

**Источники гамма-излучения закрытые
на основе радионуклида селен-75**

RUS/6223/S-96(Rev.4)

Срок действия до «9» августа 2026 г.

И.о. начальника Управления по
регулированию безопасности объектов
ядерного топливного цикла, ядерных
энергетических установок судов и
радиационно опасных объектов
Федеральной службы по экологическому,
технологическому и атомному надзору

«30» 08
2021 г.

Е.Г. Кудрявцев

Директор по специальным
перевозкам и аварийной готовности –
директор Департамента ядерной и
радиационной безопасности,
организации лицензионной и
разрешительной деятельности
Госкорпорации «Росатом»

«20» 09
2021 г.

С.В. Райков

Заявитель – Акционерное общество «Государственный научный центр - Научно-исследовательский институт атомных реакторов» (АО «ГНЦ НИИАР»).

Почтовый адрес Заявителя: Западное шоссе, д. 9, г. Димитровград, Ульяновская обл., Россия, 433510.

Сертификат-разрешение выдан АО «ГНЦ НИИАР».

Настоящий сертификат подтверждает соответствие конструкции источников гамма-излучения закрытых на основе радионуклида селен-75 согласно разделу 2 с радиоактивным содержимым согласно разделу 3 требованиям «Правил безопасности при транспортировании радиоактивных материалов» (НП-053-16) и «Правил безопасной перевозки радиоактивных материалов» (Издание 2012 года (SSR-6), МАГАТЭ, 2013) к радиоактивному материалу особого вида (РМОВ).

1. Основное назначение

Источники гамма-излучения закрытые на основе радионуклида селен-75 типа ГС75М1 и СР изготавливаются по техническим условиям ТУ 95 2934-2008-ЛУ и предназначены для радиографического контроля качества сварных соединений промышленных изделий, а также для других целей.

Разработчиком (держателем подлинников РКД) конструкции источников гамма-излучения закрытых на основе радионуклида селен-75 и их изготовителем является АО «ГНЦ НИИАР».

2. Конструкция источника

Источники представляют собой двухкапсельную герметичную конструкцию. Общий вид источников представлен на рис. 1÷2.

Во внутреннюю капсулу, изготовленную из сплава на основе титана марки ВТ1-0 или ванадия марки ВНИ-1 (ВнМ-1), помещается таблетка из спрессованного металлического порошка селена-74 или в виде соединения селенид ванадия VSe.

Внутренняя капсула с селеновой таблеткой герметизируется и облучается в реакторе с образованием селена-75, после облучения внутренняя капсула помещается во внешнюю капсулу из коррозионностойкой стали марки 12Х18Н10Т, затем проводится герметизация внешней капсулы.

Герметизация внутренней капсулы осуществляется лазерной сваркой, герметизация внешней капсулы – аргонодуговой сваркой стационарной дугой неплавящимся электродом без присадочного материала.

Источники ГС75М1 и СР имеют модификации, отличающиеся конструкционным исполнением, размерами внешней капсулы и активной части, а также активностью источника. Внешняя капсула имеет несколько модификаций: с хвостовиком (двухсторонним хвостовиком) различной конфигурации.

Основные параметры источников гамма-излучения приведены в табл. 1.

Таблица 1 – Основные параметры и размеры источников

Тип источника	Размеры, мм				Максимальная активность, не более, Бк (Ки)	
	источника		активной части			
	диаметр, D	длина, L	диаметр, d	длина, l		
CP16.10	7,15	$19,5_{-0,3}^{+0,2}$				
CP17.10	6,7	$27,0_{-0,3}^{+0,2}$				
CP18.10	7,15	$23,5_{-0,3}^{+0,2}$				
ГС75М11.10		$12_{-0,3}^{+0,5}$				
ГС75М12.10		20_{-1}				
ГС75М13.10		20_{-1}				
ГС75М14.10		$27_{-0,7}$				
ГС75М15.10		19_{-1}				
CP16.20	7,15	$19,5_{-0,3}^{+0,2}$				
CP17.20	6,7	$27,0_{-0,3}^{+0,2}$				
CP18.20	7,15	$23,5_{-0,3}^{+0,2}$				
ГС75М11.20		$12_{-0,3}^{+0,5}$				
ГС75М12.20		20_{-1}				
ГС75М13.20		20_{-1}				
ГС75М14.20		$27_{-0,7}$				
ГС75М15.20		19_{-1}				
CP16.40	7,15	$19,5_{-0,3}^{+0,2}$				
CP17.40	6,7	$27,0_{-0,3}^{+0,2}$				
CP18.40	7,15	$23,5_{-0,3}^{+0,2}$				
ГС75М11.40		$12_{-0,3}^{+0,5}$				
ГС75М12.40		20_{-1}				
ГС75М13.40		20_{-1}				
ГС75М14.40		$27_{-0,7}$				
ГС75М15.40		19_{-1}				
CP16.90	7,15	$19,5_{-0,3}^{+0,2}$				
CP17.90	6,7	$27,0_{-0,3}^{+0,2}$				
CP18.90	7,15	$23,5_{-0,3}^{+0,2}$				
ГС75М11.90		$12_{-0,3}^{+0,5}$				
ГС75М12.90		20_{-1}				
ГС75М13.90		20_{-1}				
ГС75М14.90		$27_{-0,7}$				
ГС75М15.90		19_{-1}				
CP16.140	7,15	$19,5_{-0,3}^{+0,2}$				
CP17.140	6,7	$27,0_{-0,3}^{+0,2}$				
CP18.140	7,15	$23,5_{-0,3}^{+0,2}$				
ГС75М11.140		$12_{-0,3}^{+0,5}$				
ГС75М12.140		20_{-1}				
ГС75М13.140		20_{-1}				
ГС75М14.140		$27_{-0,7}$				
ГС75М15.140		19_{-1}				

заполнено

Тип источника	Размеры, мм				Максимальная активность, не более, Бк (Ки)	
	источника		активной части			
	диаметр, D	длина, L	диаметр, d	длина, l		
CP16.200	7,15	19,5 _{-0,3} ^{+0,2}				
CP17.200	6,7	27,0 _{-0,3} ^{+0,2}				
CP18.200	7,15	23,5 _{-0,3} ^{+0,2}				
ГС75М11.200		12 _{-0,3} ^{+0,5}				
ГС75М12.200		20 ₋₁	3,5	3,5	7,4·10 ¹² (200)*	
ГС75М13.200	6,0 ^{+0,5}	20 ₋₁				
ГС75М14.200		27 _{-0,7}				
ГС75М15.200		19 ₋₁				

*) – так как активность источников превышает значение A_1 для селена-75 их перевозка должна осуществляться в упаковках типа В.

Назначенный срок службы источников – 5 лет.

3. Радиоактивное содержимое

В качестве активной части источников используется радионуклид селен-75, полученный путем облучения в реакторе капсулы с селеном-74 в элементарном состоянии или в форме селенида ванадия. Значения максимальной активности для каждого типа источников приведены в табл. 1.

4. Особые меры перед перевозкой

Уровень радиоактивного загрязнения поверхности источника не должен быть более 200 Бк.

5. Обеспечение качества

5.1. Разработка и производство источников гамма-излучения закрытых на основе радионуклида селен-75 обеспечивается в соответствии с «Программой обеспечения качества при изготовлении радионуклидных источников и препаратов в АО «ГНЦ НИИАР». ПОК-086-45-2017 (с изменением № 1,2 от 12.08.2020». АО «ГНЦ НИИАР», 2017 г.

5.2. Программа обеспечения качества ПОК-086-45-2017 (с изменением № 1,2 от 12.08.2020» разработана в соответствии с требованиями к программам обеспечения качества для объектов использования атомной энергии НП-090-11.

6. Нормативные и руководящие документы

6.1. Правила безопасности при транспортировании радиоактивных материалов, НП-053-16, Ростехнадзор, 2016.

6.2. Требования к программам обеспечения качества для объектов использования атомной энергии, НП-090-011, Федеральная служба по экологическому, технологическому и атомному надзору, 2013.

6.3. ГОСТ Р 52241-2004 (ИСО 2919:2012) «Источники ионизирующего излучения радионуклидные закрытые. Классы прочности и методы испытаний», ИПК Издательство стандартов, 2004.

7. Документация, на основании которой составлен сертификат-разрешение

7.1. Заявление АО «АТЦ Росатома» на выдачу новой редакции сертификата-разрешения RUS/6223/S-96(Rev.3) исх. № 218-01/21-1328 от 05.07.2021 (по доверенности АО «ГНЦ НИИАР» исх. № 64-1000/3729 от 06.04.2021).

7.2. Экспертное заключение АЭ 1995, АО «АТЦ Росатома», 2021 г.

8. Общие условия

8.1. Информация о пересмотрах сертификата-разрешения:

RUS/6223/S-96

Первичный сертификат-разрешение.

Выдан 18.11.2008, срок действия до 18.11.2013.

RUS/6223/S-96(Rev.1)

Пересмотр первичного сертификата-разрешения. Выдан 18.02.2011, срок действия до 18.02.2016.

RUS/6223/S-96(Rev.2)

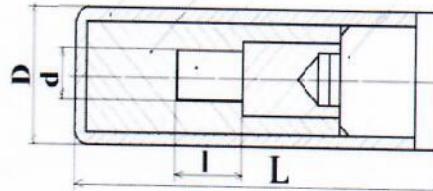
Пересмотр сертификата-разрешения. Выдан 21.12.2011, срок действия до 21.12.2016.

RUS/6223/S-96(Rev.3)

Пересмотр сертификата-разрешения. Выдан 20.09.2016, срок действия до 20.09.2021.

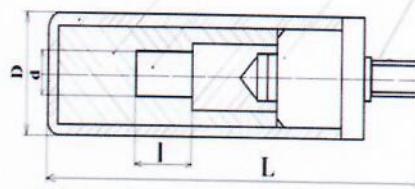
8.2. По всем вопросам, связанным с сертификатом-разрешением, следует обращаться:

- в Департамент ядерной и радиационной безопасности, организации лицензионной и разрешительной деятельности Государственной корпорации по атомной энергии «Росатом»: 119017, Москва, ул. Б. Ордынка, д. 24, тел. 8 (499) 949-29-27, факс 8 (499) 949-23-05;

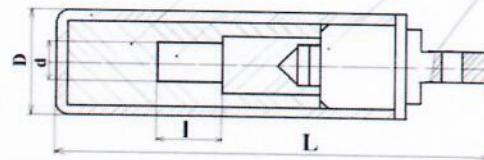

- в Федеральную службу по экологическому, технологическому и атомному надзору: 109147, Москва, ул. Таганская, д. 34, тел. 8 (495) 532-13-48, факс 8 (495) 532-13-46.

- АО «АТЦ Росатома» (194292, Санкт-Петербург, 3-ий Верхний пер., 2, тел./факс. 8 (812) 702-19-01 (основной), 8 (812) 591-52-30 (резервный)).

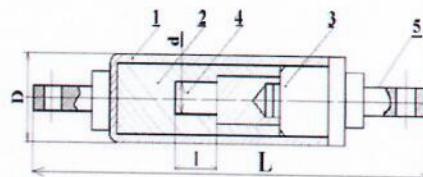
8.3. Официальными документами являются оригинал и копии сертификата-разрешения, заверенные в установленном порядке.



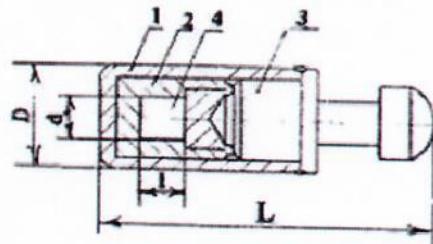
1 2 4 3


а) тип ГС75М11 (капсула без хвостовика)

1 2 4 3 5



б) тип ГС75М12 (хвостовик капсулы с резьбой)

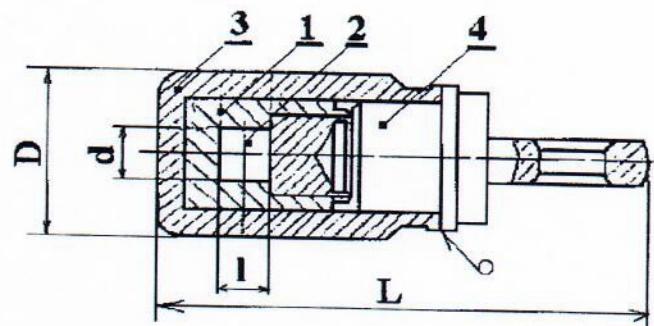

1 2 4 3 5

в) тип ГС75М13 (хвостовик капсулы с лопаткой)

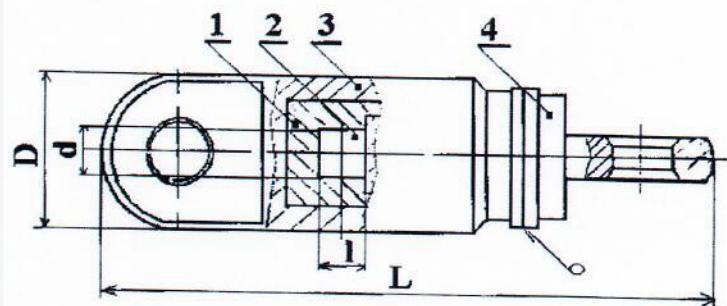
г) тип ГС75М14 (хвостовик капсулы в виде двусторонней лопатки)

д) тип ГС75М15 (со сферическим хвостовиком)

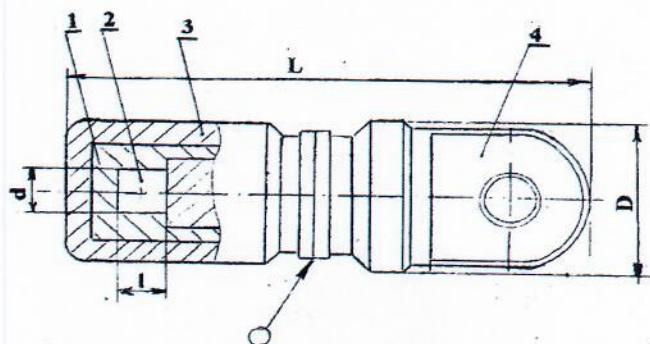
1 – капсула внешняя


4 – активная часть

2 – капсула внутренняя


5 – хвостовик

3 – пробка


Рис. 1. Общий вид источников типа ГС75М1

а) источники типа CP16

б) источники типа CP17

в) источники типа CP18

- 1 – капсула внутренняя
- 2 – активная часть
- 3 – капсула внешняя
- 4 – пробка

Рис. 2. Общий вид источников типа CP16, CP17 и CP18

Документ

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ
«РОСАТОМ»

СЕРТИФИКАТ-РАЗРЕШЕНИЕ

Регистрационный номер 246

от 29 « декабря 2025 г.

НА РАДИОАКТИВНЫЙ МАТЕРИАЛ ОСОБОГО ВИДА

**Источники гамма-излучения закрытые
на основе радионуклида селен-75**

ДОПОЛНЕНИЕ № 1

RUS/6223/S-96(Rev.4)(Add.1)

Выдан

29.12.2025

Срок действия

09.08.2026

Директор по специальным перевозкам,
аварийной готовности и гражданской
обороне – директор Департамента
ядерной и радиационной безопасности,
организации лицензионной и
разрешительной деятельности

С.В. Райков

№ 002410

Лист согласования

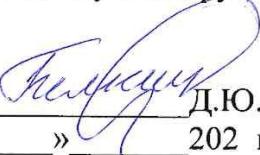
СОГЛАСОВАНО

Заместитель руководителя
Федеральной службы
по экологическому, технологическому
и атомному надзору

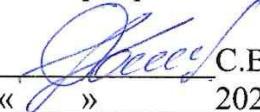
А.В. Ферапонтов
2025 г.

СЕРТИФИКАТ – РАЗРЕШЕНИЕ

НА РАДИОАКТИВНЫЙ МАТЕРИАЛ ОСОБОГО ВИДА


Источники гамма-излучения закрытые
на основе радионуклида селен-75

ДОПОЛНЕНИЕ № 1


RUS/6223/S-96(Rev.4)(Add.1)

Срок действия до 09.08.2026

Начальник Управления по регулированию
безопасности объектов ядерного
топливного цикла, ядерных энергетических
установок судов и радиационно опасных
объектов Федеральной службы по
экологическому, технологическому и
атомному надзору

Д.Ю. Белкин
«___» 2025 г.

Директор по специальным
перевозкам, аварийной готовности
и гражданской обороне – директор
Департамента ядерной и
радиационной безопасности,
организации лицензионной и
разрешительной деятельности
Госкорпорации «Росатом»

С.В. Райков
«___» 2025 г.

Заявитель – Акционерное общество «Государственный научный центр – Научно-исследовательский институт атомных реакторов» (АО «ГНЦ НИИАР»).

Почтовый адрес Заявителя: 433510, Ульяновская обл., г. Димитровград, Западное шоссе, д. 9. Тел./факс: 8 (842) 359-83-83/8 (842) 359-83-84.

В сертификат-разрешение RUS/6223/S-96(Rev.4) настоящее дополнение вносит следующее изменение: по тексту сертификата-разрешения ссылки на документ «Правила безопасной перевозки радиоактивных материалов» (Издание 2012 года (SSR-6), МАГАТЭ, 2013) заменить ссылками на документ «Правила безопасной перевозки радиоактивных материалов» (Издание 2018 года (SSR-6 (Rev. 1)), МАГАТЭ, 2019).

Документация, на основании которой составлен сертификат-разрешение:

1. Заявление АО «АТЦ Росатома» на выдачу Дополнения № 1 к сертификату-разрешению RUS/6223/S-96(Rev.4) исх. № 218-01/21-1966 от 01.12.2025 (по доверенности АО «ГНЦ НИИАР» исх. № 64-1000/13720 от 23.10.2025).

2. Экспертное заключение АЭ 2384, АО «АТЦ Росатома», 2025 г.

3. Сертификат-разрешение RUS/6223/S-96(Rev.4) на радиоактивный материал особого вида. Источники гамма-излучения закрытые на основе радионуклида селен-75, 2021 г.

По всем вопросам, связанным с Дополнением № 1, следует обращаться:

- в Департамент ядерной и радиационной безопасности, организации лицензионной и разрешительной деятельности Государственной корпорации по атомной энергии «Росатом»: 119017, Москва, ул. Б. Ордынка, д. 24; тел.: 8 (499) 949-29-27; факс: 8 (499) 949-23-05;

- в Федеральную службу по экологическому, технологическому и атомному надзору: 105066, Москва, ул. А. Лукьянова, д. 4, стр. 1, тел.: 8 (495) 645-94-79 (доб. 60-04), 8 (495) 532-13-17, факс: 8 (495) 532-13-46;

- в АО «АТЦ Росатома»: 194292, Санкт-Петербург, 3-й Верхний пер., д. 2, литер А, тел./факс: 8 (812) 702-19-01 (основной), 8 (812) 591-52-30 (резервный).

Настоящее Дополнение № 1 действительно совместно с сертификатом-разрешением RUS/6223/S-96(Rev.4).

Официальными документами являются оригинал и копии Дополнения № 1, заверенные в установленном порядке.

ROSATOM STATE ATOMIC ENERGY CORPORATION

CERTIFICATE OF APPROVAL

Reference number 125

“_9_” August 2021

Special Form Radioactive Material
Selenium 75 Sealed Radioactive Sources

RUS/6223/S-96(Rev.4)

Date of Issue

9 August 2021

Validity period

9 August 2026

Deputy Director General for the
State Safety Policy in the Defense
Uses of Atomic Energy

Yu.V. YAKOVLEV

No.001011

Approvals page

APPROVED BY

Deputy Head of the Federal Environmental,
Industrial and Nuclear Supervision Agency

A.V. FERAPONTOV
“02” 08 2021

CERTIFICATE OF APPROVAL

FOR SPECIAL FORM RADIOACTIVE MATERIAL

Selenium 75 Sealed Radioactive Sources

RUS/6223/S-96(Rev.4)

It is valid till “9” August 2026

Acting Head of the Department for Safety
Supervision of Nuclear Fuel Cycle Facilities,
Shipboard Nuclear Power Plants and Radiation
Hazardous Facilities of the Federal
Environmental, Industrial and Nuclear
Supervision Agency

E.G. KUDRYAVTSEV
“30” 07 2021

Director for Special Transport and
Emergency Response - Director of the
Department for Nuclear
and Radiation Safety, Licensing and
Enforcement Activities of ROSATOM State
Atomic Energy Corporation

S.V. RAYKOV
“20” 07 2021

The Applicant is Research Institute of Nuclear Reactors, State Scientific Center, Joint-Stock Company (RIAR JSC).

The Applicant's postal address: Zapadnoye Shosse, Bldg.9, Dimitrovgrad, Ulyanovsk region, 433510, Russia.

This Certificate of Approval was issued for RIAR JSC.

This Certificate of Approval confirms that the design of Se-75 sealed gamma-ray sources pursuant to Section 2 with the radioactive content pursuant to Section 3 complies with the requirements of "Safety Rules for the Transportation of Radioactive Materials" (NP-053-16) and "Safety Regulations for Transportation of Radioactive Materials" (2012 Edition (SSR-6) IAEA, Vienna, 2013) or special form Radioactive Material (SRM).

1. Main purpose

Se-75 sealed gamma-ray sources of type GS75M1 and SR are produced in compliance with technical specifications Spec. TU 95 2934-2008-LU and are intended for radiographic testing of welded joints quality in manufactured products, as well as for other purposes.

RIAR JSC is the developer (the owner of the original design documentation) of Se-75 sealed gamma-ray sources and their manufacturer.

2. Radioactive source design

Sources represent a sealed double capsule. A general appearance of the sources is shown in Fig. 1÷2 below.

The inner capsule made of titanium alloy (Grade VT1-0) or vanadium (Grade VNI-1 (VNM-1)) contains pressed metal powder Se-74 in the form of a pellet or vanadium selenide VSe.

The inner capsule with the pressed selenium powder is made sealed and placed under irradiation in the reactor to produce selenium-75, and after irradiation the inner capsule is inserted into the outer capsule made of corrosion-resistant steel 12X18H10T, then the outer capsule is made sealed by welding.

The inner capsule is sealed by laser welding; the outer capsule is sealed by non-consumable electrode argon-arc welding with a fixed arc without filler material.

The sources with GS75M1 and SR type capsules have modifications which differ in design, external capsule and active core material dimensions as well as source activity. The outer capsule has several modifications: with a tailpiece (dual-side tailpiece) of different designs.

The main specifications of the gamma ray sources are given in Table 1 below.

Table 1. Main Technical Specifications and Sizes of the Sources(to be continued)

Source type	Sizes, mm				Maximum activity, no higher than, Bq (Ci)	
	Source		Active core			
	Diameter, D	length, L	diameter, d	length, l		
SR 16.10	7.15	19.5 _{-0.3} ^{+0.2}	1	1	3.7-10 ¹¹ (10)	
SR 17.10	6.7	7.0 _{-0.3} ^{+0.2}				
SR 18.10	7.15	23.5 _{-0.3} ^{+0.2}				
GS75M 11.10	6.0 ^{+0.5}	12 _{-0.3} ^{+0.5}				
GS75M 12.10		20 ₋₁				
GS75M 13.10		20 ₋₁				
GS75M 14.10		27 _{-0.7}				
GS75M 15.10		19 ₋₁				
SR 16.20	7.15	19.5 _{-0.3} ^{+0.2}	1.5	1.5	7.4 10 ¹¹ (20)	
SR 17.20	6.7	27.0 _{-0.3} ^{+0.2}				
SR 18.20	7.15	23.5 _{-0.3} ^{+0.2}				
GS75M 11.20	6.0 ^{+0.5}	12 _{-0.3} ^{+0.5}				
GS75M 12.20		20 ₋₁				
GS75M 13.20		20 ₋₁				
GS75M 14.20		27 _{-0.7}				
GS75M 15.20		19 ₋₁				
SR 16.40	7.15	19.5 _{-0.3} ^{+0.2} ,	2	2	1.48-10 ¹² (40)	
SR 17.40	6.7	27.0 _{-0.3} ^{+0.2}				
SR 18.40	7.15	23.5 _{-0.3} ^{+0.2}				
GS 75M 11.40	6.0 ^{+0.5}	12 _{-0.3} ^{+0.5}				
GS 75M 12.40		20 ₋₁				
GS 75M 13.40		20 ₋₁				
GS 75M 14.40		27 _{-0.7}				
GS 75M15.40		19 ₋₁				
SR16.90	7.15	19.5 _{-0.3} ^{+0.2} ,	2.5	2.5	3.33 10 ¹² (90)*)	
SR17.90	6.7	27.0 _{-0.3} ^{+0.2}				
SR18.90	7.15	23.5 _{-0.3} ^{+0.2}				
GS 75M 11.90	6.0 ^{+0.5}	12 _{-0.3} ^{+0.5}				
GS 75M12.90		20 ₋₁				
GS 75M13.90		20 ₋₁				
GS 75M 14.90		27 _{-0.7}				
GS 75M15.90		19 ₋₁				

Table 1. Continued

GS 75M11.140	$6.0^{+0.5}$	$12_{-0.3}^{+0.5}$ 20 ₋₁ 20 ₋₁ 27 _{-0.7} 19 ₋₁	3	3	$5.18 \cdot 10^{12}(140)^*$
SR16.200	7.15	$19.5_{-0.3}^{+0.2}$,	3.5	3.5	$7.4 \cdot 10^{12}(200)^*$
SR17.200	6.7	$27.0_{-0.3}^{+0.2}$			
SR18.200	7.15	$23.5_{-0.3}^{+0.2}$			
GS 75M11.200	$6.0^{+0.5}$	$12_{-0.3}^{+0.5}$ 20 ₋₁ 20 ₋₁ 27 _{-0.7} 19 ₋₁			
GS 75M12.200					
GS 73M13.200					
GS 75M14.200					
GS 75M15.200					

*) - As the activity of the radioactive sources exceeds the Ai value for Se-75, they should be transported in Type B packages.

Intended lifetime of sources is 5 years.

3. Radioactive content

Radionuclide Se-75, produced by irradiation of selenium-74 in a target capsule in an elemental state or in the form of vanadium selenide, is used as the active core material of the sources. Maximum activity values for each type of sources are given in Table 1 above.

4. Special measures to be taken prior to shipment

The surface radioactive contamination of the source shall not exceed 200 Bq.

5. Quality assurance

5.1. Se-75 sealed gamma ray sources are developed and produced in accordance with the “Quality Assurance Program (POK) for production of radionuclide sources and radiochemicals at RIAR JSC . POC-086-45-2017 (with Modifications No.1, 2 dated 12 August 2020)”. JSC “SSC RIAR”, 2017.

5.2. Quality Assurance Programme POK-086-45-2017 (with modifications No. 1, 2 dated 12 August 2020) has been worked out in compliance with the requirements for quality assurance programs for nuclear facilities NP-090-11.

6. Statuary and regulatory documents

6.1. Safety Regulations in Transportation of Radioactive Material, NP-053-16, Federal Agency for Ecological, Technological and Nuclear Supervision (Rostekhnadzor), 2016.

6.2. Requirements to quality assurance programs of nuclear facilities NP-090-11, Federal Agency for Ecological, Technological and Nuclear Supervision (Rostekhnadzor), 2013.

6.3. GOSTR 52241-2004 (ISO 2919:2012) “Sealed radioactive sources. Strength categories and test methods”, IPK Publishing House of Standards, 2004.

7. Documents for issuing the Certificate of Approval

7.1. Application from Emergency Technical Center of Rosatom for issuing a new revision of Certificate of Approval RUS/6223/S-96(Rev.3) Ref. No. 218-01/21-1328 dated 5 July 2021 (by virtue of Letter of Attorney from RIAR JSC Ref. No. 64-1000/3729 dated 6 April 2021.

7.2. Expert Review Report AE 1995, Emergency Technical Center, ROSATOM, 2021.

8. General

8.1. Information concerning the revision of this Certificate of Approval:

RUS/6223/S-96

Primary Certificate of Approval. It was issued on 18 November 2008, valid until 18 November 2013.

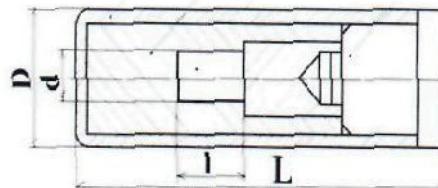
RUS/6223/S-96(Rev. 1)

Revision of the primary Certificate of Approval. It was issued on 18 February 2011, valid until 18 February 2016.

RUS/6223/S-96(Rev.2)

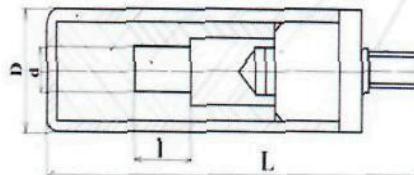
Revision of the Certificate of Approval. It was issued on 21 December 2011, valid until 21 December 2016.

Revision of the Certificate of Approval. It was issued on 20 September 2016, valid until 20 September 2021.

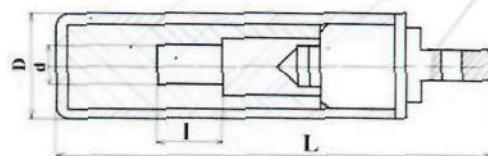

8.2. All the inquiries regarding the Certificate of Approval shall be addressed to:

- Department of Nuclear and Radiation Safety, Licensing and Approval Activities under Rosatom State Atomic Energy Corporation: 24 Bolshaya Ordynka St., Moscow 119017; Tel. (499) 949-29-27; Fax (499) 949-23-05;
- Federal Agency for Ecological, Technological and Nuclear Supervision (Rostekhnadzor): 34 Taganskaya St., Moscow 109147; Tel. (495) 532-13-48, Fax (495) 532-13-46.

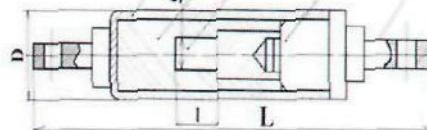
- to ROSATOM Emergency Technical Center JSC (194292, St.Petersburg, 3 Verkhnyj pereulok -liter A, Tel./Fax: 8 (812) 702-19-01 (main), 8 (812) 591-52-30 (backup).


8.3. Official documents are the original and copies of the Certificate of Approval notarized in the prescribed manner.

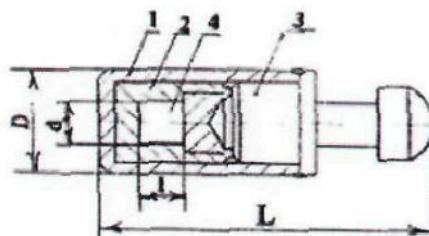
1 2 4 3


a) GS75M11 (the capsule is without tail)

1 2 4 3 5


b) GS75M12 (the capsule has a screw tail)

1 2 4 3 5



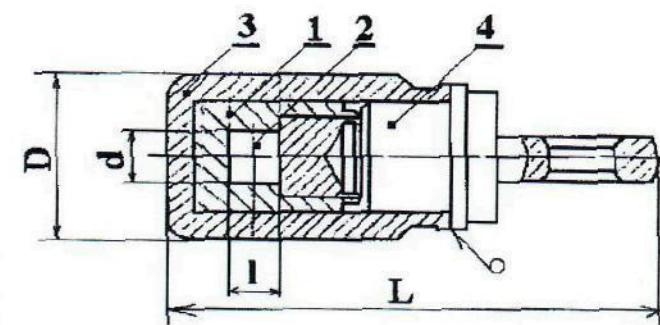
c) GS75M13 (the capsule has a blade-shaped tail)

1 2 4 3 5

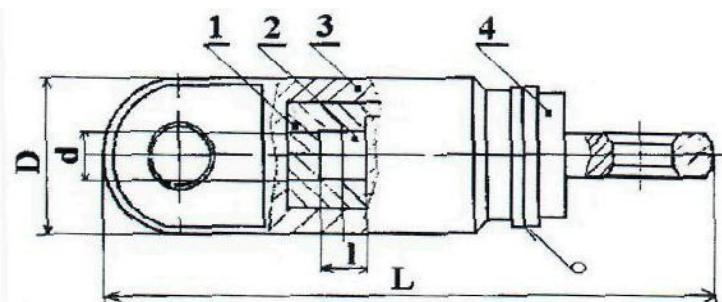
d) GS75M14 (the capsule has a double-sided blade-shaped tail)

e) GS75M15 (the capsule has a spherical tail)

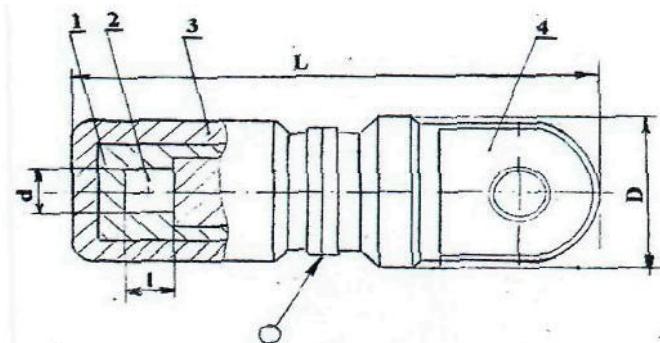
1 – outer capsule


4 – active core

2 – inner capsule


5 – tail

3 - plug


Figure 1. Main view of GS75M1 sources.

a) SR16 sources

b) SR17 sources

c) SR 18 sources

- 1 – inner capsule
- 2 – active core
- 3 — outer capsule
- 4 — plug

Figure 2. Main view of SR16, SR17 and SR18 sources.

CERTIFICATE OF APPROVAL

Reg.No. 246

December 29, 2025

SPECIAL FORM RADIOACTIVE MATERIAL

Sealed Selenium -75 gamma radiation sources

ADDENDUM No. 1

RUS/6223/S-96(Rev.4)(Add.1)

Issued on 29.12.2025

Valid till 09.08.2026

Director for Special Trade,
Emergency planning and Civil Defense
– Director of the Department
of nuclear and radiation safety,
organization of licensing
and permitting activities S.V. Raikov

Approval record sheet

APPROVED BY

Deputy Head of
Federal Service
for Environmental, Technological and
Nuclear Supervision

A.V. Ferapontov
25. 12. 2025.

CERTIFICATE OF APPROVAL

SPECIAL FORM RADIOACTIVE MATERIAL

Sealed Selenium -75 gamma radiation sources

ADDENDUM No. 1

RUS/6223/S-96(Rev.4)(Add.1)

Valid till 09.08.2026

Federal Service for Environmental,
Technological, and Nuclear Supervision,
Head of the Administration for Regulation of
the Safety of Nuclear Facilities, Nuclear Fuel
Cycle, Nuclear Power Installations of Ships
and Radiation Hazardous Facilities

D.Y. Belkin
2025

Rosatom State Corporation,
Director for Special Trade,
Emergency planning and Civil Defense
– Director of the Department
of nuclear and radiation safety,
organization of licensing
and permitting activities

S.V. Raikov
2025

Applicant – Research Institute of Nuclear Reactors, State Scientific Centre,
Joint-Stock Company (RIAR JSC).

Postal address of the Applicant: No.9 Zapadnoye Shosse, Dimitrovgrad,
Ulyanovsk region, the Russian Federation 433510. Phone/fax: 8 (842) 359-83-83/8
(842) 359-83-84.

The Certificate of Approval RUS/6223/S-96(Rev.4) shall be modified by this
Addendum as follows: the references to the document “Regulations for the Safe
Transport of Radioactive Material” (Edition 2012 (SSR-6), IAEA, 2013) shall be
replaced by the references to the document “Regulations for the Safe Transport of
Radioactive Material” (Edition 2018 (SSR-6 (Rev. 1)), IAEA, 2019).

The Certificate of Approval was issued according to the following
Documentation:

1. The Application from Rosatom JSC “ATCz” (Emergency Centre) to issue the Addendum No. 1 to the Certificate of Approval RUS/6223/S-96(Rev.4) outc. No. 218-01/21-1966 as of 01.12.2025 (on the basis of a power of attorney of RIAR JSC outc. No. 64-1000/13720 ot 23.10.2025).

2. Expert Report AE 2384, Rosatom JSC “ATCz” (Emergency Centre), 2025.

3. The Certificate of Approval RUS/6223/S-96(Rev.4) for the special form radioactive material. Sealed Selenium -75 gamma radiation sources, 2021 г.

Please contact the following organizations for any issues regarding the Addendum No. 1:

- Department of Nuclear and Radiation Safety, Organization of Licensing and Permitting Activities of Rosatom State Nuclear Energy Corporation: 119017, Moscow, B. Ordynka Street, 24; phone.: 8 (499) 949-29-27; fax: 8 (499) 949-23-05;

- Federal Service for Environmental, Technological, and Nuclear Supervision: 105066, Moscow, A. Lukyanova Street, 4, Building 1, phone.: 8 (495) 645-94-79 (extens.. 60-04), 8 (495) 532-13-17, fax: 8 (495) 532-13-46;

- Rosatom JSC “ATCz” (Emergency Centre): 194292, Saint Petersburg, 3rd Verkhny Lane, 2, Building A, phone/ fax: 8 (812) 702-19-01 (main), 8 (812) 591-52-30 (backup).

The Addendum No. 1 shall be considered valid together with the Certificate of Approval RUS/6223/S-96(Rev.4).

The Addendum No.1 (original version and copies) properly certified shall be considered the official documents.